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A B S T R A C T

Formal planning and development of what became the first Landsat satellite commenced over 50 years ago in
1967. Now, having collected earth observation data for well over four decades since the 1972 launch of Landsat-
1, the Landsat program is increasingly complex and vibrant. Critical programmatic elements are ensuring the
continuity of high quality measurements for scientific and operational investigations, including ground systems,
acquisition planning, data archiving and management, and provision of analysis ready data products. Free and
open access to archival and new imagery has resulted in a myriad of innovative applications and novel scientific
insights. The planning of future compatible satellites in the Landsat series, which maintain continuity while
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Land change science
Landsat science team

incorporating technological advancements, has resulted in an increased operational use of Landsat data.
Governments and international agencies, among others, can now build an expectation of Landsat data into a
given operational data stream. International programs and conventions (e.g., deforestation monitoring, climate
change mitigation) are empowered by access to systematically collected and calibrated data with expected future
continuity further contributing to the existing multi-decadal record. The increased breadth and depth of Landsat
science and applications have accelerated following the launch of Landsat-8, with significant improvements in
data quality.

Herein, we describe the programmatic developments and institutional context for the Landsat program and
the unique ability of Landsat to meet the needs of national and international programs. We then present the key
trends in Landsat science that underpin many of the recent scientific and application developments and follow-
up with more detailed thematically organized summaries. The historical context offered by archival imagery
combined with new imagery allows for the development of time series algorithms that can produce information
on trends and dynamics. Landsat-8 has figured prominently in these recent developments, as has the improved
understanding and calibration of historical data. Following the communication of the state of Landsat science, an
outlook for future launches and envisioned programmatic developments are presented. Increased linkages be-
tween satellite programs are also made possible through an expectation of future mission continuity, such as
developing a virtual constellation with Sentinel-2. Successful science and applications developments create a
positive feedback loop—justifying and encouraging current and future programmatic support for Landsat.

1. Introduction

There have been dramatic changes in the Landsat program over the
past ten years, many of which were made possible through actions by
the two federal Landsat partners: NASA and the U.S. Geological Survey
(USGS). In 2008, the Landsat data policy changed and the Landsat ar-
chive became free and open (Woodcock et al., 2008). This resulted in
new paradigms for data processing and sparked a major period of in-
novation and understanding (Wulder et al., 2012). In February 2013,
the Landsat Data Continuity Mission (LDCM) was successfully laun-
ched, since renamed Landsat-8, which adds to the archive an un-
precedented number of daily acquisitions with improved geometric and
radiometric properties leading to expanded scientific and operational
capabilities (Loveland and Irons, 2016; Loveland and Dwyer, 2012).
The increasingly long baseline of Landsat data that are geo- and
radiometrically consistent and calibrated has led to the generation of
new information via novel algorithmic and processing approaches.
Cloud-based high-performance computing allows for bringing algo-
rithms to data, empowering scientists and practitioners to generate new
insights and robust information products over broad areas. As captured
in data downloads of Landsat data, now over 1 million images per
month, a large and sophisticated user base is implementing integrated
analyses and often unprecedented scales (Zhe et al., 2019).

Perhaps the most objective statement on the status of the Landsat
program is found in the recently released National Academies of
Science Decadal Survey for Earth Science and Applications from Space
(2018) assessment. We share their conclusion that:

“The USGS has transformed the Landsat program via the Sustainable
Land Imaging (SLI) program by operating Landsat, connecting the
scientific/user communities and the developers of new measure-
ment technologies, and archiving/distributing data products. This
has placed the Landsat measurements on a more operational footing.
As long as it is funded, and managed as an operational program, the
SLI program will support and motivate widespread usage, benefit-
ting both the operational and scientific communities.”

The establishment of the NASA-USGS Sustainable Land Imaging pro-
gram to ensure continuation of Landsat data collection beyond Landsat-
8 allows not only science and applications but the uptake and in-
stitutionalization of Landsat measurements into programs. The de-
termination of Landsat as an operational program with plans for a series
of future launches has allowed governments to commit to the use of
Landsat data to meet programmatic needs. Understanding a forward-
going data stream also allows for planning and synergies among space
agencies as well as national and international programs and conven-
tions (e.g., Dolman et al., 2016; GCOS, 2016). Virtual constellations of

satellites, such as between the contemporaneous Landsat-8 and Sen-
tinel-2A and -2B satellites (Drusch et al., 2012; Loveland and Irons,
2016), allow for an effective increase in spatial and temporal coverage
for both programs empowering users through increased data avail-
ability (Wulder et al., 2015). The launch of Landsat-8 maintained
continuity with previous instruments while also offering improvements
in the geometric and radiometric fidelity of the imagery and through
the collection of approaching all possible terrestrial images on each
overpass. The importance of ground systems in collecting and dis-
seminating imagery has been demonstrated with notable benefits evi-
dent from the provision of analysis ready data products.

Ensuring Landsat continuity is the cornerstone of the program
(Wulder et al., 2008; Roy et al., 2014). Major steps towards solidifying
long-term continuity include the February 13, 2013 launch and sub-
sequent mission commissioning of Landsat-8 and establishment of a
Landsat-9 Architecture Study Team to define the capabilities and im-
plementation strategy. Landsat-9 has been authorized and is proceeding
towards a December 2020 launch. Planning for missions beyond
Landsat-9 is also underway with the USGS defining future Landsat
measurement needs (e.g., Landsat-10 and -11) and NASA initiating
studies to investigate and new sensor technologies (e.g., Kampe and
Good, 2017).

The 46+ year-long archive sets Landsat apart from most other sa-
tellite missions (Belward and Skøien, 2015). Substantial attention
continues to be placed on expanding and improving archive holdings.
The Landsat archive is expanding at an unprecedented daily rate due to
the marked increase in the data acquisition rates of both Landsat-7 and
-8. At present, over 1200 new images are added to the USGS Landsat
archive per day (Landsat-7, ~475; Landsat-8, ~740). The expanded
acquisition strategies have also increased the frequency of imaging over
persistently cloudy regions of the globe and polar regions. Since the
2013 launch of Landsat-8, ~500,000 images are acquired per year,
resulting in over 1 million Landsat-8 specific downloads from the USGS
annually.

The Landsat Global Archive Consolidation (LGAC) initiative has
continued and led to a doubling of the size of the archive with the
addition of international holdings not previously part of the USGS ar-
chive (Wulder et al., 2016). A key element of mission continuity is
cross-calibration across Landsat sensors. Currently, all archive holdings,
from Landsat-1 through Landsat-8, adhere to a consistent radiometric
framework (Markham et al., 2014; Mishra et al., 2014; Markham and
Helder, 2012). Advanced processing methods and institutional capacity
of the USGS was availed upon to bring Multispectral Scanner System
(MSS) data from Landsats 1–5 in line with Thematic Mapper (TM) data
and later Landsat instruments. This effort aims to improve the ability to
conduct time series studies across the full Landsat record.
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Efforts to articulate and advance a science and product vision for
terrestrial global change studies (Roy et al., 2014) have led to a number
of advances in data delivery, including establishment of an on-demand
atmospherically collected surface reflectance product capability for all
Landsat TM, Enhanced Thematic Mapper plus (ETM+), and Opera-
tional Land Imager (OLI) data (Claverie et al., 2015; Ju et al., 2012;
Vermote et al., 2016), and, since 2017, implementation of a tiered
collections management strategy, complemented by production of
Landsat Analysis Ready Data (ARD) products for the conterminous
United States (CONUS), Alaska, and Hawaii (Dwyer et al., 2018).

Based upon the convergence of programmatic, technological, and
scientific events, Landsat science and applications are developing ra-
pidly and are having a notable impact, forming links between human
and earth system interactions. As described in dedicated sections later
in the paper, the Landsat applications community has an increasingly
large user base undertaking sophisticated, integrated, and often un-
precedented analyses. The addition of Landsat-8 and the archive ex-
pansion and improvements have been particularly significant in ad-
vancing the state-of-the-art of Landsat scientific and operational
applications (Roy et al., 2014). Increasing numbers of applications re-
late a shift to integrated large area and dense time series analyses
(Wulder et al., 2018), including development of global and regional
gridded composited products and derived products to understand ve-
getation condition, land cover change, agricultural phenomena, forest
dynamics, and surface water extent, among others (Zhu, 2017). There is
also an improved capacity for integrating Landsat into US Federal, other
national and private sector natural resources management programs,
including agricultural mapping such as yield predictions and com-
pliance monitoring using increasingly systematic and institutionalized
monitoring systems (Zhu et al., 2016; Healey et al., 2018; White et al.,
2014). Utilizing Landsat thermal infrared measures for retrieval of
surface temperature (Malakar et al., 2018), there has been an enhanced
and improved ability to use contemporaneous thermal and solar-re-
flected Landsat data to derive evapotranspiration (Hendrickx et al.,
2016; Anderson et al., 2012), and water use (de la Fuente-Sáiz et al.,
2017; Anderson et al., 2018) information at field scales. Thermal in-
formed application advancements have been demonstrated to improve
mapping of moisture stress impacts on crop yields over large areas (e.g.,
Yang et al., 2018), as well as increasing the accuracy of required cloud
and shadow detection and screening algorithms (Zhu et al., 2018). Of
critical importance to understanding climate change, an expansion of
science and applications related to cryospheric conditions and dy-
namics (Fahnestock et al., 2016) has also taken place. There is an in-
creasing clear understanding of the supporting mechanisms and the
benefits of synergies among space agencies. Virtual Constellations of
satellites, such as between Landsat-8 and Sentinel-2 (Wulder et al.,
2015), allow for an effective increase in spatial and temporal coverage
(Li and Roy, 2017), empowering users through increased data avail-
ability.

Building upon the insights and experiences of the 2012–2017 USGS/
NASA Landsat Science team as well as the research context commu-
nicated by Roy et al. (2014), the aim of this article is to support and
elaborate on recent progress of the Landsat program and the science
and applications that are being enabled. Above we highlighted key
elements and recent Landsat program achievements; in the following
sections we support and elaborate more fully on these topics. We
highlight the programmatic and policy advances that have led the
Landsat program to the point where it has achieved long-sought pro-
grammatic stability, improved technical capability, and expanded sci-
entific and operational applications. We also describe with examples
the context and recent trends that may further advance Landsat science
and applications, and conclude with an outlook of the future including
consideration of interoperability with the Sentinel-2 constellation and
the planned Landsat-9 and -10 systems.

2. Programmatic developments

2.1. Continuity

Landsat mission continuity is supported by the 1992 US Land
Remote Sensing Act which maintains that the US Government should
ensure a permanent, global Landsat imaging archive to enable long-
term monitoring of Earth's changing land surface and climate, both
natural and human-induced (Wulder et al., 2008). Landsat continuity is
defined by systematic 16-day global, imaging coverage of continents,
islands, corals, and coastal oceans, no-cost access to the entire image
data archive, and adherence to comparable temporal, spatial, spectral,
and radiometric measurements.1 The traceable radiometric and geo-
metric accuracy and stability standards of Landsats 1–8 is unparalleled
(Markham and Helder, 2012; Markham et al., 2014; Mishra et al.,
2014), and Landsat is distinguished by being both the first medium
resolution Earth observation satellite as well as the longest running
continuous program (Belward and Skøien, 2015). For most of Landsat's
history, there have been two satellites in orbit providing 8-day temporal
repeat around which governments, scientists, businesses, and data users
at-large have developed infrastructures and investments assuming an
uninterrupted data stream.

Given over 50 years of planning and operations, the Landsat pro-
gram is multifaceted and highly complex. A comprehensive history of
the Landsat program can be found in Goward et al. (2017). As shared in
Fig. 1, each Landsat mission can be considered by Mission Acquisition
(i.e., planning, financing, building, pre-launch activity) and Mission
Operations comprising data and related management activities (e.g.,
image scheduling, downlink, archiving, dissemination). Mission Ac-
quisition has largely been the purview of NASA, with responsibilities
currently divided between NASA (space segment) and USGS (ground
segment). For Landsat-4 and -5 Mission Operations were made a com-
mercial responsibility under a contract to NOAA (National Oceanic and
Atmospheric Administration) which also coincided with similar com-
mercial responsibilities for Data Distribution and Archiving. Since
2001, both data distribution and archiving have been the responsibility
of the USGS. Mission Acquisition for the Earth Resources Technology
Satellite (ERTS; later renamed Landsat-1) was initiated by NASA in
1967 leading to a July 23, 1972 launch (Goward et al., 2017). Since
that time, there has always been at least one Landsat satellite in orbit
and collecting data (Wulder et al., 2008). The notable 29-year longevity
of Landsat-5 (with a 3-year design life) mitigated the failure of Landsat-
6 to reach orbit.

Landsat sensors have developed from initially having four broad
bands, to having increasingly narrow, numerous, and well-positioned
wavelength ranges (Fig. 2). The initial Landsat-1 Multispectral Scanner
System (MSS) launched in 1972 had spectral bands that occupied
visible and near infrared wavelengths and were collecting data that was
typically resampled to 60-m at a 6-bit quantization—a sensor config-
uration that was repeated for MSS onboard the subsequent Landsats-2
and -3. With the Thematic Mapper (TM) on Landsat-4 and -5, the
number of spectral bands increased to seven at 8-bit quantization. The
six optical bandpasses were positioned differently than the MSS and the
six optical channels had a spatial resolution of 30m. Notably, TM saw
the introduction of two shortwave infrared (SWIR) channels. The En-
hanced Thematic Mapper Plus (ETM+) onboard Landsat-7, had largely
similar spectral and spatial resolution characteristics as the TM, with
the exception of an additional 15-m spatial resolution panchromatic
channel and a 60m TIR band instead of the 120m spatial resolution of
TIR and Landsat-4 and -5. The Operational Land Imager (OLI) on
Landsat-8 furthered the previous trend of refined spectral band passes
and the addition of new channels, now with 12-bit quantization. OLI

1 https://landsat.usgs.gov/sites/default/files/documents/LST_Landsat_
Continuity_Requirements.pdf [accessed: February 22, 2019].
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has an enhanced blue (coastal aerosol) and cirrus channel to inform
aquatic science and applications and to improve cloud detection and
screening, respectively. The backwards compatibility of OLI with prior
instruments, coupled with OLI's substantially improved radiometry
(Irons et al., 2012; Schott et al., 2016), have greatly expanded Landsat
science and applications in cryosphere and aquatic science areas in
particular. Beyond the spatial, spectral, and radiometric characteristics
noted above, the satellites, detectors, communications, downlink ca-
pacity, and ground system technology have likewise advanced and
changed over time.

Landsat's continuity is especially important because it provides a
unique medium long thermal infrared measurement record that began
in 1982 with Landsat-4 (Schott et al., 2012). As spectral response
functions and 60 to 120-meter spatial resolution varied between
Landsat instruments over time, considerable effort has been undertaken
to ensure radiometric consistency among the sensors (Schott et al.,

2012). The Thermal Infrared Sensor (TIRS) aboard Landsat-8 experi-
enced stray light problems early in the mission (Montanaro et al., 2015)
and technical adjustments to the TIRS have stabilized its measurement
performance on orbit (Montanaro et al., 2014; Schott et al., 2014). In
addition to its important value for systematic cloud screening, the full
potential of Landsat's thermal infrared record will be more fully rea-
lized once atmospheric compensation algorithms to retrieve surface
temperature reach an operational production phase (e.g., Malakar
et al., 2018).

Because Landsat's measurement continuity is traceable and of high
quality, mission science objectives can be maintained throughout the
entire image archive to the pixel-level (NRC, 2013). Furthermore, the
measurement record is characterized by systematic spatial and tem-
poral uncertainty and repeatability metrics all the way through to data
processing systems and distribution. More broadly, continuity of
Landsat's calibrated measurements ensures scientific integrity and

Fig. 1. Landsat mission series and management history. Six decades of program management responsibilities. The broken bars relate anticipated future management
plans. For additional detail see Goward et al. (2017). (Source: NASA/Landsat Legacy Project Team and American Society for Photogrammetry and Remote Sensing).
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objectivity for climate science and global change research. Table 1
outlines Landsat continuity characteristics and the specifics which en-
able a reliable data stream. It is important to note from the description
above that measurement continuity encompasses both space and
ground segments, with data delivery and science supported products as
key elements. These elements identified in Table 1 are essentially
minimums to enable continuity, with the incorporation of new tech-
nology and exceeding these elements (as noted previously with changes
to spatial, spectral, and radiometric characteristics) being possible and
desirable.

2.2. Landsat products and processing

In recognition of the need for improved usability and consistency
among Landsat sensors, the global Landsat-1 to −8 archive was re-
processed as Collection 1 with reprocessing finished May 2017 (Dwyer
et al., 2018). The Collection 1 data are now the standard available data
(https://landsat.usgs.gov/landsat-collections; [accessed: Jan 10,
2019]). Provision of Landsat data with consistent geometric and cali-
brated radiometric qualities supported by metadata and per-pixel
quality flags enables data users to focus time on analysis rather than
preparing for analysis. To further reduce the pre-processing burden on
users, Landsat ARD products were generated using the Collection 1
algorithms. ARD products are available for search and download over
the conterminous United States (CONUS), Alaska, and Hawaii for
Landsat-4, -5, -7 and -8 (Dwyer et al., 2018). ARD are provided as tiled,
top of atmosphere and atmospherically corrected products defined in a

common equal area projection, accompanied by spatially explicit
quality assessment information, and appropriate metadata to enable
further processing while retaining traceability of data provenance
(Dwyer et al., 2018). Planning is underway to extent the ARD products
to Landsat-1 to -5 MSS data and global ARD production is being con-
sidered. The readiness for automated processing is predicated on three
key ideas: geometric alignment (stackability), radiometric consistency
including atmospheric correction, and metadata and per-pixel quality
information. This ensures that all images are processed in a consistent
manner that is anchored by traceability standards and calculations that
follow the pixel data from the instrument level to the user.

2.2.1. Geometric alignment
At the most fundamental level, observations of the Earth's surface

need to be both geometrically aligned with known geometric accuracy
based on a dense network of ground control locations. Precise and ac-
curate alignment within (band-to-band) and between (sensor-to-sensor)
multiple earth observation datasets is required to enable integration
with other spatial datasets, and is, most importantly, a precursor to
change detection and time series analyses. This is especially important
for analysis ready data intended for automated processing, because
many hundreds to thousands of scenes can be analysed in a single run,
without any visual review of individual images. Slight misregistration
can result in noisy time series, especially for locations that have sharp
surface discontinuities, such as the edge of a field. Larger misregistra-
tion errors can result in unacceptable classification errors. To mitigate
this risk, the USGS has stratified the Collection 1 data into Tier 1 and

Fig. 2. Landsat sensors, spectral channels and band-passes, superimposed on atmospheric transmission percentage (grey background). MSS: Landsat-1 through -5;
TM: Landsat-4 and -5; ETM+: Landsat-7; OLI and TIRS: Landsat-8. (Source: NASA/Landsat Legacy Project Team and American Society for Photogrammetry and
Remote Sensing).

Table 1
Landsat continuity characteristics and specifications (elements after Wulder et al., 2008).

Element Description

Data accessibility Systematic data archive, non-discriminatory distribution, free
Geographic coverage Landmasses, coastal oceans, ice sheets, islands, and coral reefs
Temporal frequency Single mission 16-day revisit; 8-day revisit with two satellites (sun-synchronous orbit)
Spectral bands Visible, near-infrared, shortwave-infrared, thermal infrared
Spatial resolution 30 to 60-m solar reflective; 60 to 120-m thermal infrared
Radiometric calibration accuracy and stability Within 5% absolute spectral radiance; within 3% top-of-atmosphere reflectance; within 2% thermal infrared spectral radiance
Radiometric performance Meet or exceed Landsat-8 performance (i.e., 12 bits with signal-to-noise and noise-equivalent-change-in-temperature for the

reflective and thermal wavelength bands (Irons et al., 2012))
Geometric and geodetic accuracy Tier 1≦ 12-meter radial RMSE
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Tier 2 categories based on the geometric accuracy of the imagery (Tier
1 data have geodetic accuracy with ≦12-m Root Mean Square Error
(RMSE), and Tier 2 data have accuracy > 12-m) giving users a level of
certainty with respect to geometric accuracy when performing auto-
mated analysis (https://landsat.usgs.gov/what-are-landsat-collection-
1-tiers; [accessed: Jan 10, 2019]).

Improving satellite navigation technologies (e.g., global positioning
system (GPS), high precision star trackers, inertial measurement de-
vices) over the span of the Landsat missions have enabled improve-
ments in the inherent (pre-adjusted) geolocation accuracy of Landsat
products from kilometers for Landsat-1 to -3, to hundreds of meters for
Landsat-4 through -7, to tens of meters for Landsat-8. The geolocation
accuracy of Landsat-8, benefitting from recent technological advances,
at 18m 90% circular error (Storey et al., 2014), is essentially equivalent
in accuracy to the Global Land Survey (GLS) ground control point
network that is used to geometrically correct Landsat products from all
missions. This inherent accuracy enhances the utility of scenes where
the application of ground control points is impractical due to cloud
cover, lack of surface features (e.g., ice sheets), or instability of the
surface features (e.g., dune fields) (Roy et al., 2014).

Historically, alignment of the global Landsat archive with the
Earth's surface has been achieved through Global Land Survey ground
control point chip sets (Gutman et al., 2013). The inclusion of a fully
operational GPS on Landsat-8 has made it apparent that the absolute
geometric accuracy of the Landsat archive needed to be improved
through a re-baselining of the geometric ground control to a more re-
cent chip set. Currently, the Landsat chip set is being readjusted to be
consistent with the Sentinel-2 Global Reference Image (Dechoz et al.,
2015) and the Collection 1 data will be reprocessed as Collection 2
(Storey et al., 2016). Aligning the global Landsat archive with the
Sentinel-2 global reference image will ensure that the Landsat archive is
aligned to (a) the Earth's surface, (b) other Landsat observations, and
(c) other EO observations such as those acquired by the Sentinel series
of sensors. Landsat-8 data have been used to reposition the GLS control
points in regions where the GLS control points are least accurate,
thereby improving the absolute positional accuracy of data products
throughout the Landsat archive (Storey et al., 2014).

2.2.2. Radiometric comparability and surface reflectance
The Landsat archive is well calibrated and is referenced to the most

accurate instrument in the series, Landsat-8 OLI (Mishra et al., 2014).
Along with sensor and operational improvements, radiometric cali-
bration accuracy has improved from ~10% in the era of Landsat-1 to
3% with Landsat-8 (Markham et al., 2014; Morfitt et al., 2015). In
Collection 1, a reflectance-based calibration is used as it has higher
accuracy than previous radiance-based calibration approaches. The
Landsat-8 calibration is propagated to earlier sensors using data sets
from adjacent Landsat sensors acquired during near-simultaneous nadir
overpasses. Each Landsat sensor in the series temporally overlapped the
preceding sensor and the following sensor. During these overlap per-
iods, select data sets were measured over stable test sites to provide a
calibration transfer between these data sets. Implementation of this
cross-calibration has been completed for Landsats 1–8 and is main-
tained as post-launch cal/val responsibility at USGS EROS.

Atmospheric effects can have a considerable impact on Landsat
data. Whilst some analyses that are robust to radiometric precision and
accuracy can be performed on ‘top of atmosphere’ (TOA) reflectance
products (Song et al., 2001), an increasing number of analytical tech-
niques, especially those that make use of time series analysis (Zhu and
Woodcock, 2014a) or multi-temporal composites, rely on the avail-
ability of surface reflectance (Hermosilla et al., 2015a). Atmospheric
correction over land, even if imperfect, is needed as input for higher-
level surface geophysical parameter derivation and products (Justice
et al., 1998). It is also often necessary to use the surface reflectance
product in multitemporal or multispectral image-based applications
aimed at detecting and monitoring changes on the Earth's surface (e.g.,

anthropogenic impacts) (Vermote et al., 2002). Atmospheric correc-
tions over aquatic systems are particularly critical for the retrieval of
water quality products (e.g., concentrations of total suspended solids,
chlorophyll, and dissolved organic carbon) and to enable reliable time
series analyses of water resources and aquatic ecosystems (Gordon,
1997; Pahlevan et al., 2018).

Based on the increasing number of analyses that rely on surface
reflectance as input, surface reflectance is increasingly understood as a
minimum standard for analysis ready data. Additional corrections for
satellite view angle and terrain illumination effects can also be im-
plemented (Lewis et al., 2017; Roy et al., 2016a). Atmospheric cor-
rection relies on the modeling of the coupled surface-atmosphere
system (radiative transfer) (Vermote et al., 1997) and the assumption
the data are calibrated to the absolute standard (reflectance). For
Landsat, the differences between top of atmosphere reflectance and
surface reflectance over most land surfaces are more pronounced in the
visible range (blue to red) and typically reach 0.02 (red)–0.04 (green)
reflectance unit over vegetation, which is of the same magnitude as the
surface signal (Ju et al., 2012). Over turbid or eutrophic inland or
nearshore coastal waters, a greater portion of at-sensor signal arises
from atmospheric scattering and absorption (i.e., > 90% in the blue
bands) (Gordon and Wang, 1994; Pahlevan et al., 2014a) and atmo-
spheric correction is particularly needed.

At the time of this writing, multiple atmospheric correction algo-
rithms have been proposed and USGS EROS has implemented two of
them for Landsat-8 (Landsat Surface Reflectance Code, LaSRC)
(Vermote et al., 2016) and Landsat-4, -5, and -7 (Landsat Ecosystem
Disturbance Adaptive Processing System, LEDAPS) (Masek et al., 2006)
data. The uncertainty of the atmospheric correction is on the order of
5–10% depending on spectral channel and underlying atmospheric
conditions. Coupling this with a Landsat-8 3% radiometric calibration
uncertainty increases the uncertainty of a surface reflectance product to
the range of 6—10% (Vermote et al., 2016). Characterization of the
quality of surface reflectance means that in addition to the established
methods for evaluating on-orbit calibration precision (Chander et al.,
2009), there is a need to quantify the radiometric accuracy of surface
reflectance products (Pahlevan et al., 2014b; Vermote et al., 2016). The
absolute radiometric accuracy of surface reflectance products is un-
derpinned by the need for a systematic comparison of satellite-derived
surface reflectance values with in-situ surface reflectance measure-
ments (Doxani et al., 2018). For example, the Land Product Char-
acterization System has been established to enable comparative ana-
lysis of satellite and in-situ surface reflectance measurements (Gallo
et al., 2017).

An additional element of ensuring that data is ‘analysis ready’ is
providing access to the relative spectral responses of the specific sen-
sors. For example, the Landsat-8 OLI and Sentinel-2 MSI spectral re-
sponse functions are described in Barsi et al. (2014a) and Gascon et al.
(2017). Some authors have developed sensor specific models that ac-
count for the way in which specific absorption features interact with the
relative spectral response of each sensor (Lymburner et al., 2016).
Others have developed statistical calibration factors to adjust the
spectral reflectance of similar sensor bands (Roy et al., 2016b; Zhang
et al., 2018). This is especially important in an era when time series and
temporal change detection analyses are increasingly being constructed
from observations from more than one sensor.

2.2.3. Collection and granule level metadata and per-pixel quality
assurance information

Collection (overall dataset) and granule (image specific) level me-
tadata (as described at https://earthdata.nasa.gov/about/science-
system-description/eosdis-components/common-metadata-repository/
unified-metadata-model-umm; [accessed: Jan 10, 2019]) are required
to ensure traceability of products generated from collections (Lewis
et al., 2017). This traceability enables granules to be linked to other
contexts (such as with point data or data from other sensors), and to
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allow searching of the data archive. The ability to include or exclude
observations that are affected by cloud (or related cloud shadow) is
essential for automated processing of large volumes of data and in the
generation of time series. The generation and utilization of per pixel
‘QA’ band information is already well established within the MODIS
community (Roy et al., 2002). This level of per-pixel quality assurance
information allows for exclusion of observations affected by sensor
factors such as ‘no data’ (for example scene edges and ‘scan line cor-
rection off’ gaps, sensor saturation, and non-contiguous observations).
Per-pixel QA band information is also required to exclude cloud and
cloud shadow affected observations. The performance of ARD can be
further enhanced by a shift from sensor specific formats such as path/
rows to a sensor agnostic tiling system that includes self-contained
metadata within the file format and deployment of these files on high-
performance computing infrastructure.

3. Trends in analytical approaches

3.1. Time series

Tracking change through time has always been central to the
Landsat mission, and recent years have seen a revolution in time series

techniques that take full advantage of Landsat's unique historical record
to monitor change (Zhu, 2017). Coupled with increasingly affordable
computation as well as automated atmospheric correction algorithms
(Masek et al., 2006) and cloud detection algorithms (Zhu and
Woodcock, 2012), temporally-dense analysis has been increasingly
applied over large areas and in diverse thematic domains. Moreover, by
considering the spectral history of each footprint on the ground as a
time series, more nuanced understanding of the changes on the Earth's
surface has been possible.

Temporally dense, per-pixel analysis has been parlayed into a wide
variety of science and application products. Foundational image data-
sets built on Landsat best-pixel composites (Griffiths et al., 2013a; Roy
et al., 2010; White et al., 2014) have allowed subsequent development
of applied maps of condition and change (Gómez et al., 2012; Hansen
et al., 2014; Hermosilla et al., 2015a, 2015b; Schroeder et al., 2011;
White et al., 2011; White et al., 2014; Yan and Roy, 2014, 2016;
Griffiths et al., 2018; Roy and Yan, 2018). Algorithms that focus di-
rectly on disturbance have also benefited from the temporally-dense
Landsat data (Brooks et al., 2012; Huang et al., 2010; Hughes et al.,
2017; Kennedy et al., 2010; Zhu et al., 2012), allowing investigation of
drivers of change (Alonzo et al., 2016; Pahlevan et al., 2018), national
to global-scale assessment of disturbance (Hansen et al., 2013;

Fig. 3. Panel A. Example Landsat time series trajectories for different forest states and their characteristics (after Meigs et al., 2011 and Pflugmacher et al., 2012).
Panel B. A graphical representation of Landsat time series change metrics. Different disturbance types will have different metric values (e.g., different change
magnitudes (m1 versus m2) and persistances (p1 versus p2)).
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Hawbaker et al., 2017; Masek et al., 2013; Griffiths et al., 2018) that
themselves can play into improved modeled estimates of change
(Williams et al., 2016). More broadly, dense time series of Landsat data
are eminently suitable for detection of land cover change, including for
urban areas (Schneider, 2012), agricultural regions (Hurni et al., 2017;
Yan and Roy, 2016; Roy and Yan, 2018), and water dynamics at the
global scale (Pekel et al., 2016). Reviews of recent algorithm develop-
ment and change products are available in Zhu (2017), Wulder et al.
(2012), and Wulder et al. (2018).

Building on the analysis of temporally dense Landsat data, time
series approaches leverage the entire temporal domain to understand a
wide range of changes on the Earth's surface. In this paradigm, the
spectral trace of a given pixel can be considered an ecological response
curve whose shape reveals something about the underlying processes
causing the change (Kennedy et al., 2014). Increasingly researchers fit
regression lines and splines to sequences of Landsat images (Hostert
et al., 2003; Lawrence and Ripple, 1999). Such time series algorithms
allow detection of long, slow evolution in landscapes, including those
caused by degradation and by growth (Goodwin et al., 2010; Meigs
et al., 2011; Senf et al., 2015; Vogelmann et al., 2012; White et al.,
2017), as well as cyclical processes related to phenology (Melaas et al.,
2016; Pasquarella et al., 2016) and crop development and harvesting
(Gao et al., 2017; Roy and Yan, 2018). Such conceptualization of land
surface change extends beyond automated approaches to the tools used
to interpret and validate maps of change (Cohen et al., 2010), which in
turn can provide statistical insight into causes of change at national
scales (Cohen et al., 2016; White et al., 2017; Hermosilla et al., 2015b,
2016).

Underpinning the aforementioned advances in monitoring with
Landsat time series are temporal spectral metrics. These metrics char-
acterize temporal trends through time, distilling complex change tra-
jectories (Fig. 3, Panel A), and providing continuous variables that can
support an array of modeling applications. Metrics are generated from
the seasonal and annual trends, segments, and breakpoints of the
temporal analysis of the time series and characterize the change event,
as well as pre- and post-change conditions (Fig. 3, Panel B). As evident
in Fig. 3, time series metrics can capture and describe variable lengths
of time, dictated by the characteristics of the trends found in the time
series. Landsat time series metrics are essential for attribution of dis-
turbance types (Hermosilla et al., 2015b; Kennedy et al., 2015; Moisen
et al., 2016; Schroeder et al., 2017) and land cover classes (Gómez
et al., 2016; Hermosilla et al., 2018). Metrics characterizing post-
change conditions have been used to characterize both the short- and
long-term return of vegetation post-disturbance (Kennedy et al., 2012;
Griffiths et al., 2014; White et al., 2017). Pflugmacher et al. (2012) used
Landsat time series metrics to significantly improve predictions of
biomass, basal area, and Lorey's mean height, and subsequent studies
have demonstrated that the longer the time series, the greater the in-
crease in prediction accuracy (Pflugmacher et al., 2014; Bolton et al.,
2018).

3.2. Pixel-based processing

Landsat imagery are increasingly used for large area characteriza-
tions of land surface processes and temporal image compositing ap-
proaches have been instrumental for this. Transitioning from scene-
centered (e.g., cloud free scenes) Landsat data analysis towards a pixel-
based (e.g., cloud free pixels) processing perspective was fundamental
for enabling compositing with Landsat data (Kennedy et al., 2014). The
requirements for this were satisfied through important developments
such as the open data policy, improved geometric quality of Landsat
data, ubiquitous IT resources and fully automated algorithms for at-
mospheric correction (Schmidt et al., 2013; Vermote et al., 2016) as
well as cloud/cloud-shadow masking (Zhu and Woodcock, 2012; Zhu
and Woodcock, 2014b). This has enabled users of Landsat data to
transform segments of the Landsat archive into viable data that can be

exploited in large-area processing approaches.
From an algorithm perspective, most compositing approaches ap-

plied to Landsat data follow a best-pixel selection strategy, often using
simple selection criteria such the maximum NDVI or median NIR
(Potapov et al., 2011) or consider multi-band distributions of cloud-free
candidate observations (Roy et al., 2010; Flood, 2013). Other best-pixel
approaches additionally consider similarity criteria (Nelson and
Steinwand, 2015) or derive a decision through a weighted evaluation of
several image and scene based parameters (Griffiths et al., 2013a;
White et al., 2014; Frantz et al., 2017; Griffiths et al., 2018). Contrary to
best-pixel selection approaches, some approaches calculate new spec-
tral values such as in mean-value compositing (Vancutsem et al., 2007)
or generate synthetic images based on harmonic time series fits (Zhu
et al., 2015a).

Applications that utilize compositing for large area Landsat analyses
frequently target forest cover and forest change analyses. Integration of
multi-year imagery has enabled the mapping of the entire boreal forests
and related changes (Potapov et al., 2011), forest dynamics in Eastern
Europe in the context of socio-economic transitions (Griffiths et al.,
2014; Potapov et al., 2015). Sub-continental assessments of annual
forest cover changes and the attribution of change agents have been
performed for all of Canada (White et al., 2014; Hermosilla et al.,
2016). The first global assessments of forest cover and disturbance was
performed with Landsat data building heavily on distributed cloud-
computing and a suite of composites and other metrics (Hansen et al.,
2013; Gorelick et al., 2017). Agricultural applications based on large-
area Landsat compositing include multi-decadal compositing for dis-
entangling grassland-cropland dynamics in Eastern Europe (Griffiths
et al., 2013b). Anomaly mapping based on multi-decadal compositing
and differencing of NDVI has proven useful for monitoring agricultural
drought and groundwater dependent ecosystems in the Great Basin,
USA (Huntington et al., 2016, 2017).

4. Science and application advances

The following sub-sections present a synthesis of the state-of-the-art
for recent Landsat related science and applications.

4.1. Application areas

4.1.1. Cryosphere
Landsat-8 has transformed snow and ice research, having a far

greater impact on this field than any of the earlier Landsat series sa-
tellites. New products and research paths have built upon the Landsat
programs' initial potential for mapping and characterizing unknown
areas of the polar regions, first recognized soon after Landsat-1 (e.g.,
Swithinbank, 1988; Williams and Ferrigno, 2010) and developed fur-
ther with Landsat TM (e.g., Hall et al., 1987; Orheim and Lucchitta,
1987; Orheim and Lucchitta, 1988; Steffen and Schweiger, 1991;
Scambos et al., 1992). The improvement in applicability to cryospheric
research stems from three advances in the Landsat-8 Operational Land
Imager (OLI) and post-acquisition processing: increased radiometric
resolution (to 12-bit), with a concurrent adjustment of the visible –
near-infrared dynamic range; improved geolocation accuracy to<1
pixel ground-equivalent scale; and an increase in image acquisition rate
(now>700 scenes/day). With polar overlap of the scenes, polar gla-
ciers, ice sheets, and the peripheral sea ice along the Arctic and Ant-
arctic coastal areas are observed on a sub-monthly basis (cloud cover
permitting). Landsat-8's off-nadir viewing capability has permitted new
first-time Landsat program image acquisitions at up to 84° latitude.
Landsat-8 TIRS has proven useful both for low-temperature mapping of
the central Antarctic ice surface (Fogt and Scambos, 2014; Scambos
et al., 2018) and debris cover mapping on glaciers (Bhardwaj et al.,
2015), despite early issues with stray light and detector array calibra-
tion (Barsi et al., 2014b; Montanaro et al., 2014). Polar application of
the TIRS sensor is now aimed at tracking details of ocean surface
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temperature at tidewater glacier fronts and icy fjords (similar to past
work using Landsat-7; Mankoff et al., 2012).

Perhaps the most significant improvement from Landsat-8 for gla-
ciological science has been in mapping ice flow velocity in glaciers and
ice sheets (e.g., Jeong and Howat, 2015; Fahnestock et al., 2016;
Mouginot et al., 2017). The improvement in radiometric sensitivity has
resulted in a new capability of mapping smooth unfractured ice sheet
regions on the basis of snow surface texture alone (demonstrated in
Bindschadler, 2003), greatly extending the mappable area of the ice
sheets. Improved geolocation and high acquisition rates are supporting
a finer temporal resolution for ice flow change detection, which has
revealed far larger ranges in ice flow, both seasonally and inter-
annually, than had been appreciated previously (Fig. 4). Landsat data
enables near-real-time monitoring and communication of glacier and
ice sheet velocity (e.g., https://nsidc.org/data/golive; [accessed Jan 10,
2019]). Improved radiometry in the visible bands of Landsat-8 also
greatly improved the mapping of meltwater lakes on the ice sheets (e.g.,
Pope et al., 2016; Miles et al., 2017; Kingslake et al., 2017). High ac-
quisition rates support near-weekly monitoring of lake formation,
drainage, and freeze-up dates, which in turn provides greater detail for
studies of glacier acceleration in response to lake drainage to the base of
the ice sheet.

Landsat has been used widely to map snow cover extent (Crawford
et al., 2013; Dozier, 1989), subpixel fractional snow cover (Rosenthal

and Dozier, 1996), and snowmelt timing (Hall et al., 2015). Landsat has
also served as an essential medium resolution reference source for va-
lidation of snow mapping algorithms for MODIS snow products (Rittger
et al., 2013). Despite Landsat's valuable role for snow remote sensing
science, further advancements will have to overcome several remaining
challenges that include accurate cloud and cloud shadow detection and
screening over snow and ice surfaces (Choi and Bindschadler, 2004;
Crawford, 2015), mapping snow underneath dense forest (Klein et al.,
1998), low solar zenith illumination angles in winter, removal of
aerosol effects during atmospheric compensation processing, and in-
creased temporal revisit frequency to enable tracking of persistent snow
cover at regional scales and beyond (Crawford, 2015; Selkowitz and
Forster, 2016).

4.1.2. Aquatic science and surface water mapping
The notably improved signal-to-noise (SNR) performance of OLI

(Morfitt et al., 2015) plus the addition of the coastal aerosol band have
dramatically improved Landsat-8's ability to map water quality. The
Landsat TM and ETM+ instruments have traditionally been used to
monitor turbidity in fresh and coastal waters and, if the turbidity was
only a function of a single parameter, potentially map that parameter
(Kloiber et al., 2002). Gerace et al. (2013) and Pahlevan and Schott
(2013) predicted that the increased SNR expected from OLI's push-
broom design as well as the new 443-nm band can potentially improve

Fig. 4. Examples of ice sheet and glacier velocity mapping and derived products using Landsat-8. a) Landsat Ice Speed Map of Antarctica (LISA; NSIDC data set, www.
nsidc.org [accessed February 22, 2019]; Gardner et al., 2018); b) ice surface strain rate maps of the Slessor and Recovery glaciers based on the LISA mapping (Alley
et al., 2018); c) ice speed map of southeastern Alaska glaciers, spanning 2013–2015 data (Fahnestock et al., 2016); d) time series of three glacier outlets (centerline,
near the grounding line) showing the increase in flow speed and the ability to measure seasonal change with the high frequency of coverage of polar areas. In the
graph, small blue and green dots are ice flow speeds from InSAR satellites (Radarsat and TerraSAR-X) and black dots are Landsat-8 image pair–derived speeds. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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simultaneous quantitative retrieval of the three primary coloring agents
in fresh and coastal waters (chlorophyll (Chl), total suspended solids
(TSS) and yellowing organics (colored dissolved organic materials
(CDOM)). Drawing on OLI's on-orbit SNR (Pahlevan et al., 2014b)
which significantly exceeded requirements (and exceeds TM/ETM+
performance by up to a factor of eight). Concha and Schott (2016)
demonstrated that this potential was achieved. The low SNR of heritage
Landsat instruments had previously restricted the utility of empirical
algorithms (e.g., band ratio) sensitive to random/systematic noise. Not
only water quality mapping but also bottom composition mapping (e.g.,
coral reefs) in optically shallow waters are significantly enhanced (e.g.,
Hedley et al., 2018; Wei et al., 2018). High-fidelity retrievals of water
quality parameters or bottom composition is contingent upon a robust
processing method for the removal of atmospheric effects, of which,
aerosol contributions are the most variable in space and time. The
heritage ocean color processing system (Franz et al., 2015) has proven
to perform well in moderately turbid nearshore coastal waters
(Pahlevan et al., 2017) allowing for time series analyses of global
coastal waters as well as complex biogeochemical cycling in land-water
interface. It is only with a rigorous atmospheric correction that the
aquatic community is able to devise algorithms for the retrievals of TSS
and Chl, which requires a vast amount of collocated field radiometric
data. A widely used ocean Chl algorithm using a blue-green ratio has
been demonstrated to provide reasonable products over moderately
eutrophic coastal waters (Franz et al., 2015; Pahlevan et al., 2016).
However, due to the empirical nature of these algorithms (Lymburner
et al., 2016; Nechad et al., 2010) and the complex optical regime in
inland and nearshore coastal waters, algorithms are often region-spe-
cific, necessitating parameter tuning.

The cumulative inference indicates an enormous advance for the
aquatic community. Until now, quantitative multi-constituent retrieval
of water quality parameters had largely been restricted to ocean color
missions like MODIS and SeaWiFS. Evaluating water quality in spatially
heterogenous inland and nearshore coastal waters (bays, harbors, etc.)
was only possible via heritage missions with marginal radiometric
performances. Landsat-8's improved radiometric performance and the
443-nm band opens opportunities for a wide range of local and national
users to better monitor and manage water resources. The recent in-
tegration of heritage Landsat data processing into the SeaWiFS Data
Analysis System (Pahlevan et al., 2018) allows for long-term studies of
aquatic environments using a common processing platform. The science
community can further explore long-term consistent water quality
products along with Landsat-derived surface temperature products
(Laraby and Schott, 2018; Malakar et al., 2018; Schaeffer et al., 2018)
to infer the associated intricate relationships in aquatic health status
and the ambient water temperature. Current research focuses on de-
veloping water-type-specific algorithms and improving the atmospheric
correction in CDOM-rich and extremely turbid waters.

Recent analysis of the Landsat archive has advanced our knowledge
of surface water dynamics at scales from local to global. By using
imagery across multiple years and throughout seasons it has been
possible; to map the extent and dynamics of surface water and flooding
for entire river basins (Tulbure et al., 2016); to map continental-scale
changes in persistent water bodies and ephemeral features (Mueller
et al., 2016), lake extents, their distribution plus seasonal and inter-
annual lake area variability (Sheng et al., 2016); to produce global
inventories for specific years of lakes (Verpoorter et al., 2014) and all
surface water (Feng et al., 2016); to map and separate permanent and
seasonal water surfaces at 5 to 10 year intervals globally (Yamazaki
et al., 2015); and to show where global surface water occurrence
(seasonality and persistence) changed month by month over more than
three decades (Pekel et al., 2016). Collectively the above work provides
new information to improve hydrology and climate modeling, to
identify climate change impacts and threats to biodiversity, to analyze
water usage, demand, and stress, to model the spread of waterborne
pollution and diseases, to assess desertification, drought and flood risks

and occurrences, even for the geopolitics of transboundary water dis-
tributions and supplies.

4.1.3. Vegetation phenology
4.1.3.1. Agricultural environments (phenology). Physiological crop
growth stages can be related to crop phenological metrics detected
using remote sensing data (Sakamoto et al., 2011; Zeng et al., 2016;
Gao et al., 2017). Current remote sensing phenology products are
normally available from coarse resolution sensors such as MODIS and
VIIRS (Zhang et al., 2003). At these scales (≥250-m), crops and fields
are frequently mixed, which limits the uses of coarse resolution
phenology products over complex and heterogeneous agricultural
landscapes. These crop phenological metrics are more useful when
mapped at Landsat spatial resolution or at field scale. However,
extracting crop phenology at field scale using Landsat imagery is
challenging due to the lack of frequent clear Landsat observations.

In recent years, data fusion approaches have been developed to
improve temporal sampling at Landsat spatial scales. These spatial and
temporal data fusion models allow combining of high frequency yet low
spatial resolution imagery (e.g., MODIS and VIIRS) with less frequent
but high spatial resolution imagery (e.g. Landsat and Sentinel 2) (Gao
et al., 2015). The data fusion approach can bridge large temporal gaps
between actual Landsat observations, integrating temporal information
from coarser but wider swath imaging sensors. Using the Spatial and
Temporal Adaptive Reflectance Fusion Model (STARFM) (Gao et al.,
2006), Gao et al. (2017) generated daily surface reflectance and vege-
tation index at Landsat spatial resolution for central Iowa from 2001 to
2015. Fifteen years of phenological metrics for corn and soybean were
extracted at 30-m resolution and compared to crop growth stages from
the National Agricultural Statistics Service (NASS) crop progress. Re-
sults demonstrated that time series data from multiple sensors effec-
tively detect major crop physiological stages at the field scale. The
phenology for corn and soybean crops can be clearly separated and
quantified at 30-m resolution. This capability has potential applications
in farmland management and crop growth modeling for yield predic-
tion.

Landsat observations can be doubled in areas where two Landsat
paths overlap. For example, in the Grape Remote sensing Atmospheric
Profile and ET eXperiment (GRAPEX; Kustas et al., 2018) Gallo site near
Lodi, California,> 60 clear Landsat-7 and -8 observations each year
were obtained from 2013 to 2016. These observations are frequent
enough for generating daily vegetation index and grape vine phenology
using Landsat data alone (Sun et al., 2017). Combining Landsat and
other Landsat-resolution data such as from Sentinel-2 in the process can
directly benefit crop phenology mapping. Research is underway to in-
tegrate Landsat and Sentinel-2 for extracting crop phenology especially
for mapping crop growth stages in real-time, within the growing season.

Crop phenology mapping would benefit from having more frequent
Landsat observations and higher spatial resolution (e.g., 10-m). While
multi-sensor data fusion has proven effective at simulating Landsat-
scale surface reflectances between overpasses, more frequent actual
acquisitions are clearly preferable. This is due to several reasons. First,
fusion relies on consistency in surface reflectance data between sensors
which can be a challenge due to the differences in sensor character-
istics, calibration and atmospheric corrections. Second, while fusion
works well retrospectively, it is less well adapted for simulating re-
flectance changes in real time – i.e., beyond the most recent Landsat
acquisition. The more frequent the updates, the more accurately crop
progress can be tracked. Increasing spatial resolution in the reflectance
bands on future Landsat missions to 10-m would enable monitoring of
smaller sized fields, which are prevalent in many regions globally
(White and Roy, 2015).

4.1.3.2. Forests (phenology). Phenology became central in the Landsat
data acquisition strategy with Landsat's Long-Term Acquisition Plan
(LTAP) for Landsat ETM+ (Loveland and Dwyer, 2012) that greatly
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supports phenology-related studies. In particular, research focusing on
forest phenology targets a broad range of scientific questions that are of
utmost importance for remote sensing and global change research:
First, better understanding forest phenology is core for disentangling
the Earth's ecosystems response to ongoing climate change (Broich
et al., 2015; Senf et al., 2017a). Second, forest phenology from long-
term satellite data allows upscaling forest ecological knowledge from
the field to landscape, continental and global scales (Fisher et al., 2006;
Melaas et al., 2013; Nijland et al., 2016). Third, better characterizing
forest phenology from Landsat allows creating phenological metrics in
support of phenology-optimized image compositing, mapping and
monitoring (Frantz et al., 2017; Griffiths et al., 2013a; White et al.,
2014).

The great variety of global forest phenologies renders mapping and
characterization challenging, including issues related to highly diverse
seasonality, forest types, or forest densities and height (White et al.,
2010). It is therefore not surprising that forest phenology studies have
long been the domain of coarse-scale analyses that offer more frequent
observations from space. Landsat-based studies on forest phenology
therefore often take advantage of various fusion strategies between, for
example, Landsat and MODIS (Zhu et al., 2012; Frantz et al., 2017;
Baumann et al., 2017).

With recent methodological advances in time series analyses and
abundant data being available through Landsat Global Archive
Consolidation (LGAC), modeling forest phenology from Landsat data
will allow backcasting phenology to the 1980s, which will be core to
relate forests phenology to global change (Senf et al., 2017b). As noted
in Wulder et al. (2016), the regional yield of imagery available in the
Landsat archive varies regionally and temporally, constraining the
generality of opportunities especially prior to the combined Landsat-5
and -7 period and the Landsat-8 era. Melaas et al. (2016) have shown
that it is feasible to identify the start and end of the growing season in
temperate and boreal forests from Landsat time series. While the gra-
dual character of savanna ecosystems in terms of tree height and den-
sity poses additional challenges for phenology studies, it seems also
possible to separate different savanna subsystems based on their phe-
nological fingerprint (Schwieder et al., 2016). Approaches to produce
within-year, gap-filled, series of Landsat data (e.g., Vuolo et al., 2017)
offer an example and foreshadow opportunities for improved capture of
phenology and phenomena that vary rapidly over space and time. Data
blending approaches (across spatial scales) have also been demon-
strated to produce bi-weekly, phenologically relevant, outputs
(Bhandari et al., 2012).

4.1.4. Albedo, surface temperature
4.1.4.1. Surface albedo. Land surface albedo (the proportion of
incoming solar radiation which is reflected back to space from a
surface) plays an important role in the Earth's surface energy budget.
However, albedo, which is an intrinsic quality of the surface, varies
both temporally and spatially as a function of surface type, surface
structure/cover, and ecosystem dynamics, with dramatic and rapid
alterations occurring in response to seasonal snowfall and melt, water
fluctuations and flooding, and vegetation phenology, as well as to
disturbance and recovery processes.

Moderate resolution cloud-free, near-nadir imagery from the
Landsat series provides information on surface heterogeneity, vegeta-
tion status, and biomass extent, but cannot provide adequate multi-
angle observations to accurately capture the true effects of surface
anisotropy (i.e., bidirectional reflectance distribution function, BRDF)
and produce realistic bi-hemispherical albedo quantities of the surface.
However this angular information can be derived from coarser resolu-
tion, wide swath, multi-angle imagers such as MODIS and VIIRS (Lucht
et al., 2000; Schaaf et al., 2002; Wang et al., 2014; Campagnolo et al.,
2016). Thus, Landsat-8 land surface albedo is derived by coupling
Landsat observations with MODIS or VIIRS BRDF information (Shuai
et al., 2011). This provides true Landsat albedo at more appropriate

spatial resolution needed for a number of land surface applications,
including monitoring of forests, agricultural fields, impervious surfaces
in urban areas, areas affected by insect, wildfire or storm damage, and
other heterogeneous and dynamic environments such as shorelines and
wetlands (Mihailovic et al., 2004; Barnes and Roy, 2010; Wang et al.,
2016; Andrews et al., 2017). Furthermore, albedo can vary significantly
over snow and snow-free surfaces with significant climate implications
(Betts, 2000) that may be more appropriately resolved at Landsat re-
solution. Thus far, Landsat-8 snow and snow-free albedo have good
agreement with field measured albedo (RMSEs of< 0.05) from a range
of spatially representative sites of the International Baseline Surface
Radiation Network (BSRN), NOAA's Surface Radiation Budget Network
(SURFRAD), the Arctic Observatory Network (AON), and the Ameriflux
network (Wang et al., 2016).

4.1.4.2. Surface temperature. A Landsat-8 surface temperature product
has been developed (Malakar et al., 2018). Initially it was expected that
this product would take advantage of the two thermal bands available
on the Landsat-8 TIRS instrument. Given stray light/ghosting issues
(Montanaro et al., 2014) the product is based on a single-band solution,
and hence applicable to the entire Landsat thermal archive and uses
Landsat-8 band 10 (10.60–11.19 μm) due to its better calibration. The
Landsat surface temperature product has undergone testing on Landsat-
5 and -7 data using water surface temperatures as truth. The product
uses global reanalysis data and elevation in conjunction with the
MODerate resolution atmospheric TRANsmission (MODTRAN)
radiative transfer code to estimate atmospheric transmission path
radiance and downwelling radiance on a per pixel basis (Cook et al.,
2014). It uses ASTER derived emissivity data modified by Landsat
derived NDVI values to estimate per-pixel emissivity (Hulley and Hook,
2009).

Surface temperatures derived from the NOAA moored buoy fleet
have been compared to Landsat-5 derived surface temperatures using
North American Regional Reanalysis (NARR) data (Mesinger et al.,
2006). The results were encouraging for the 25 cloud-free sites avail-
able (no clouds within 5–10 km of the buoy) showing residual errors in
the derived temperature of −0.2 K ± 0.89 K. These results also
showed increasing error with clouds in the surrounding area which
prompted a more global study. The resulting global study used MERRA
reanalysis data (Rienecker et al., 2011) as input to the atmospheric
parameter retrievals and “best quality” MODIS derived sea surface
temperature data for truth. This was required because the buoy and
NARR data were only available for North America. The data covered a
wide range of atmospheric conditions across the globe. In all, 3196 sites
were studied using cloud-free Landsat-7 ETM+ data and provided a
mean error of 0.2 K and an RMSE of 1.77 K. The errors increased when
the site was close to clouds or the atmospheric transmission was low.
For the 1395 sites with cloud distances > 5 km and transmission va-
lues > 0.55 the expected RMSEs were reduced to 1.02 K (Laraby and
Schott, 2018).

4.1.5. Water use and crop yield (evapotranspiration)
Evapotranspiration (ET), the flux of water vapor from the land

surface to the atmosphere, is the second largest water budget compo-
nent after precipitation. Quantifying ET is fundamental for under-
standing energy and water budgets at global to field scales, and the
ability to produce a detailed accounting of water use will promote more
sustainable management of our freshwater resources. Over the past
decade, the use of Landsat optical and thermal data for water and
agricultural management has greatly increased (Anderson et al., 2012;
Leslie et al., 2017). This is due, in part, to the Landsat open-data policy
as of 2008, coupled with advances in automation of ET algorithms and
high-performance computing. These developments have catapulted
Landsat-based ET research and applications to the forefront of water
management, particularly in the western U.S. (Willardson, 2014).

Landsat's spatial resolution and coincident reflectance and thermal
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band(s) provide the means to accurately and consistently quantify
water consumption over large areas and long time periods, and at field
scale - the scale at which water and agriculture is managed. Surface
temperature forms the basis for ET estimation by many commonly used
Landsat-based surface energy balance algorithms by exploiting the fact
that ET consumes energy and therefore cools the land surface
(Anderson et al., 2011; Kalma et al., 2008; Allen et al., 2007). Re-
flectance based algorithms that rely on vegetation indices such as NDVI
have shown utility for estimating ET from irrigated crops that have
ample water supply with dry or little exposed wet soil (e.g., Melton
et al., 2012), as well as during the cool season where the surface tem-
perature contrast between wet and dry fields is reduced. Vegetation
Index approaches are less well-suited for routine satellite monitoring of
actual water use over rainfed agricultural lands and natural systems
such as wetlands (Fig. 5), or for detecting onset of stressed conditions
(Anderson et al., 2012). Thermal band imagery at field scale can ef-
fectively capture the elevated soil and canopy temperature signals that
accompany moisture deficiency and stress, serving as a high-resolution
proxy for surface soil moisture measurements.

ET information at scales discriminating different crop types can be
used for water accounting (Karimi et al., 2013) and for scheduling ir-
rigation applications (Kustas et al., 2018). Globally, demand for field-
scale ET information for food and water security applications is ever
increasing (Fisher et al., 2017). In combination with time series of
surface reflectance data, Landsat ET time series can be used to assess
changes in water use that accompany changes in land cover and land
use (Anderson et al., 2018). As a result, state-level compliance man-
agement and monitoring authorities now use Landsat-based ET maps to
complement pumpage inventories, estimate groundwater recharge and
discharge, and for assessing interbasin transfers of groundwater
(Beamer et al., 2013; Huntington et al., 2016).

Thermal-based ET retrievals are also being used to advance the
detection of agricultural drought and resulting impacts on crop yields.
The Evaporative Stress Index (ESI), quantifying standardized anomalies
in the actual-to-reference ET ratio at regional scale using thermal
imagery from geostationary satellites, has demonstrated capability for
early detection of rapid onset (“flash”) drought impacts and associated
crop stress, both within the U.S. and internationally (Anderson et al.,
2013, 2016a, 2016b; Otkin et al., 2016). However, the 3–5 km pixel
resolution afforded by geostationary, and moderate resolution thermal
sensors like MODIS, cannot resolve crop stress signatures in individual
farm fields, providing a blended signal from multiple crop types and
management strategies. Yang et al. (2018) demonstrated that when

disaggregated to 30-m resolution using Landsat TIR and reflectance
band imagery, ESI has the capacity to capture developing stress signals
and predict resulting yield reductions. Field-scale ESI is being in-
tegrated with Landsat-Sentinel-MODIS fused vegetation index time
series (Gao et al., 2018) and phenology products (see Vegetation phe-
nology sub-section) within a regional yield-modeling framework to
account for impacts of moisture stress occurring during phenologically
sensitive stages of crop growth.

4.1.6. Forest monitoring
Changes in forest ecosystems result in a variety of ecosystem re-

sponses (Vogelmann et al., 2012) that are influenced by many factors
and vary according to the magnitude and nature of the change. Repeat
measurements of forest ecosystems through time enable the char-
acterization of an ecosystem's response to change (via the temporal
trajectory of observations), and the more measurements that are ac-
quired, the greater the likelihood that both the change—and the eco-
system's response to that change—will be accurately captured (Kennedy
et al., 2014). Free and open access to the temporally extensive Landsat
archive in 2008 fundamentally changed the manner in which Landsat
data are used for forest monitoring (Banskota et al., 2014). In a forest
monitoring context, Landsat time series has allowed for movement
beyond a focus on binary identification of whether or not a stand-re-
placing change has occurred, enabling the characterization of a much
broader range of change types, magnitudes, and directions as well as
pre- and post-change conditions.

Numerous disturbance mapping algorithms and approaches using
Landsat time series data have emerged (see review by Zhu, 2017), with
each algorithm having a range of capabilities for detecting both gradual
and discrete disturbance events (Cohen et al., 2017). These algorithms,
using either cloud-free image composites (Griffiths et al., 2013a; White
et al., 2014) or every clear image pixel (Zhu and Woodcock, 2014a;
Brooks et al., 2014), and unconstrained by computational limitations
(Hansen et al., 2013), have enabled the accounting of forest dynamics
over long time frames and large areas, using both sample-based (Masek
et al., 2013) and spatially extensive mapping approaches (Griffiths
et al., 2014; Hansen et al., 2013; Potapov et al., 2015; White et al.,
2017). While the capacity for comprehensive forest monitoring over
large areas has been demonstrated, Landsat time series data have also
enabled other methodological improvements in forest monitoring, such
as the development of approaches for automating the attribution of
disturbance type (e.g. fire, harvest, windthrow) (Schroeder et al., 2011;
Hermosilla et al., 2015b; Schroeder et al., 2017; Oeser et al., 2017),

Fig. 5. Landsat-8 false color infrared (left) and TIRS-based retrieval of ET (following Allen et al., 2007) (right) over Mason Valley, NV from July 29, 2015. Landsat's
TIRS detects evaporation from soil, wetlands, and open water areas, whereas common vegetation index bands such as near-infrared do not as shown by areas of low
reflectance with relatively high evaporation (e.g. areas within white ellipses).
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characterizing post-disturbance regrowth and recovery (DeVries et al.,
2015; Frazier et al., 2015; Chu et al., 2016; Pickell et al., 2015; Frazier
et al., 2018; White et al., 2018) and differentiating recovery trends by
disturbance type (Madoui et al., 2015; White et al., 2017), as well as
characterizing the temporal dynamics of forest fragmentation
(Hermosilla et al., 2019). Landsat time series have also provided new
opportunities to detect and evaluate more gradual and non-stand-re-
placing disturbances related to pests, disease, and drought (Goodwin
et al., 2008; Meigs et al., 2011; Vogelmann et al., 2012; Senf et al.,
2015; Pasquarella et al., 2017; Ahmed et al., 2017).

Methods and approaches for using Landsat time series to under-
standing of post-disturbance recovery, forest decline, and the impacts of
climate change in forests will likely continue to be a focus of ongoing
and future research (McDowell et al., 2015; Cohen et al., 2016). Like-
wise, the development of methods that enable the full integration of
MSS data into forest monitoring approaches will further extend the
baseline of disturbance history (Vogeler et al., 2018). While the ma-
jority of studies noted above have focussed on the use of 30-m Landsat
data from TM, ETM+, and OLI sensors, Pflugmacher et al. (2012) de-
monstrated the utility of incorporating the full Landsat record (e.g.,
1972 forward), inclusive of MSS data, for characterizing forest dy-
namics.

5. Outlook

5.1. Importance of Landsat to international science and monitoring
programs

Since Landsat-1 acquired its first image in 1972, the global human
population has almost doubled (UNDESA, 2017), atmospheric CO2

concentration has increased by around 25% (Keeling and Whorf, 2005),
10 to 20% of the world's drylands are affected by land degradation
(Reynolds et al., 2007), total forest area has shrunk by around 3%
(Keenan et al., 2015), and biological diversity has been in almost
continuous decline (Butchart et al., 2010). Such trends have not gone
unnoticed by the world's policymakers: the 1992 UN Conference on
Environment and Development, held in Rio de Janeiro, put in place
provisions leading to the UN Framework Convention on Climate
Change (UNFCCC), the Convention on Biological Diversity (CBD) and
the UN Convention to Combat Desertification (UNCCD). International
consensus-building on environmental issues has, in fact, continued
throughout the Landsat Program's lifetime, perhaps reaching an apogee
in the 2030 Agenda for Sustainable Development, with its 17 Sustain-
able Development Goals (SDG) and 169 targets (UN, 2015).

The Rio Conventions recognize the importance of systematic ob-
servations, and all three have identified priorities; Essential Climate
Variables for the UNFCCC (Dolman et al., 2016; GCOS, 2016), Essential
Biodiversity Variables for CBD (Pereira et al., 2013; Pettorelli et al.,
2016) and Progress Indicators for the UNCCD (Sommer et al., 2011;
UNCCD, 2013). Progress towards the SDG targets is also being mea-
sured through indicators, currently well over 200 of them (UNESC,
2017). The variables and indicators requested by these Multilateral
Environmental Agreements (MEAs) vary in terms of the detail with
which they are defined; some are expressed by metrics including fre-
quency (days, years, decades) and geospatial resolution (m, km,
country/region), others are more qualitative. Variables and indicators
where Landsat has made a significant contribution, and where further
research is a priority, are presented in UNFCCC (GCOS, 2016), CBD
(Pettorelli et al., 2016), UNCCD (UNCCD, 2013), SDG (UNESC, 2017)
(i.e., satellite-derived glacier area, lake area, burned area, land cover
and land use change).

One example of the above is the UNFCCC's mechanism to ‘reduce
emissions from deforestation and forest degradation, and the role of
conservation, sustainable management of forests and enhancement of
forest carbon stocks’ (REDD+). This mechanism came into existence
partly because it could be monitored (De Sy et al., 2012), and this

monitoring was possible because of the Landsat program's spatial and
temporal coverage; the steps involved in REDD+ accounting specify
the use of ‘Landsat-type remotely sensed data’ for monitoring changes
in forest area, and note that the Landsat archive is currently the ‘only
free global mid-resolution (30m) remote sensing imagery’ covering the
necessary years (GOFC-GOLD, 2016).

5.2. The role of Landsat as a reference instrument

Since 2000 the world of civilian satellite remote sensing has
changed dramatically (Belward and Skøien, 2015). No longer are there
only a small number of instruments in space that provide imagery for
science and commercial purposes. Today, there are dozens of com-
mercial companies and many nations that are developing their own
systems (Butler, 2014) with a capacity to address increasingly complex
questions and information needs (Finer et al., 2018). For example, the
number of satellites in the PLANET constellation has been increased to
provide near daily global coverage 3-m multi-spectral data (Strauss,
2017). Thus, the question that surfaces becomes, ‘What is the role of a
science grade moderate resolution government satellite in a commercial
world of hundreds of imaging satellites?” This becomes especially cri-
tical when comparisons are made of the resources necessary to launch
and operate a Landsat-class sensor as opposed to a ‘smallsat’ sensor. A
key role that is essential for the optical satellite remote sensing com-
munity, and one that can only be fulfilled by a science-grade legacy
instrument system, is that of providing an anchor, or reference point, by
which other systems can be compared (Schingler Jr., 2015). It is cri-
tical, not only for the scientific community but also for the commercial
community, to be able to use data from multiple sources and combine
them in a consistent manner that allows extraction of information that
would otherwise be unavailable. If this cannot be achieved, then the
usefulness of these systems is compromised. It is useful to note that the
use of commercial high spatial resolution data sources comes with a
number of costs, including financial (to purchase), computing (to pro-
cess and store), and management (to organize and access) (Wulder
et al., 2008). Depending on the geometric and radiometric quality of a
given high resolution data source, automated approaches may be pre-
cluded, with costly user interventions required.

Landsat sits in a unique position to fulfill this role. For many years it
has been referred to as a ‘gold standard’ by which other sensors have
been compared (Goward et al., 2017). This is due to its historical le-
gacy, availability of data, global imaging, and to its superior calibra-
tion. Thus, it serves as the central reference point to which most
moderate and high resolution optical satellite systems are compared to
today. Landsat-8, in particular, boasts a stable radiometric performance
since its launch providing traceable, consistent TOA reflectance ob-
servations across a wide dynamic range, i.e., over land, snow/ice, and
water bodies (Helder et al., 2018). In order to fulfill this vital role,
Landsat must continue to be a reference radiometer against which all
other satellite payloads have their performance gauged against. This
implies that it must continue to excel in the production of the highest
quality data. In order to do so, radiometric, geometric, and spatial ca-
libration must continue to be improved so that the uncertainties asso-
ciated with TOA and surface products can be reduced. Furthermore,
labeling each TOA observation (pixel) and the derived surface re-
flectance products with associated uncertainties enables a rigorous and
traceable intercomparison analysis.

5.2.1. Thermal infrared, TIRS
The long archive of global, moderate resolution thermal imagery

collected by the Landsat series since 1982 is unmatched by any other
satellite program, and will continue to be an invaluable asset to better
manage Earth's water resources. In the early planning for the Landsat
Data Continuity Mission, the thermal component was omitted as a cost-
savings measure. The ultimate inclusion of TIRS on Landsat-8 was the
culmination of successful demonstration of the science and application
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imperatives to maintain continuity of the archive and legacy of Landsat
thermal imagery and to support operational water management appli-
cations (Willardson, 2014).

The TIRS imager brought new quantum well (QWIPS) technology to
Landsat, providing a pushbroom system with 100-m spatial resolution
and a substantial increase in SNR over previous Landsat systems
(Reuter et al., 2015). Using Landsat-8 TIRS, the thermal community has
created and expanded new applications fronts that use the concurrently
collected thermal and reflected Landsat data of Landsat-8 and previous
Landsats to retrieve ET, surface energy components, and water use in-
formation (Burkhalter et al., 2013; Hendrickx et al., 2016; de la Fuente-
Sáiz et al., 2017; Anderson et al., 2018). Besides utility for ET mapping,
Landsat thermal imagery have been demonstrated to substantially im-
prove cloud and shadow detection and mapping (Zhu and Woodcock,
2012; Zhu et al., 2015b). The higher SNR of TIRS on Landsat-8 and new
means for calibration has provided new capacity to monitor water
quality (Cook et al., 2014) and as input to specifications for future TIRS
imagers (Cui et al., 2015). NASA and Landsat Science Team efforts have
mitigated the ghosting problem with the TIRS imager that were largely
compensated for by correction using contextual radiance from the
ghosting source (Montanaro et al., 2015). The cause of ghosting has
been identified and will be corrected for Landsat-9 (Montanaro et al.,
2014).

In preparation for future Landsat missions, the importance of more
frequent thermal-imaging to mitigate the effects of clouds on monthly
and annual ET retrievals at the field scale has been demonstrated.
Anderson et al. (2012) have shown that a single Landsat satellite having
16-day return time satisfied temporal requirements for time-varying ET
only two years (8%) out of the 26-year Landsat archive for a relatively
‘clear’ region of southern Idaho. With a second satellite having the same
16-day return time, but with an 8-day offset from the first satellite, the
number of years successfully meeting time-based requirements for ET
increased to four years out of ten (40%). With a 4-day return, the re-
quirement of one monthly clear-sky image was met in 70 to 80% of all
years. More humid regions of the US, such as the Midwest, have rela-
tively cloudy images that require an even shorter image revisit interval
for high levels of success. A minimum four-day return time for thermal
imaging is recommended for successful ET retrievals over large portions
of the globe. Quantifying the value of increased temporal sampling in
high resolution TIR imaging is one objective of the ECOsystem Space-
borne Thermal Radiometer Experiment on Space Station (ECOSTRESS)
research mission, launched in June 2018. The unique orbital pattern of
the International Space Station will allow frequent multi-band thermal
imaging at Landsat-like spatial resolution (~70-m) and a nominal 4-day
interval, but as frequently as several images per day. The increased
accuracy in surface temperature retrievals afforded by multiple thermal
bands and the ability to additionally retrieve surface emissivity (Hulley
et al., 2012) make this a promising configuration for future Landsat
missions.

5.2.2. MSS
MSS data were acquired systematically by Landsat-1 to -3 from

1972 to 1983 and intermittently by Landsat-4 and -5 from 1982 to 2012
(Goward et al., 2006). As of early 2016 there were over 1.2 million MSS
images in the US archive, with close to two million expected after
completion of the global archive consolidation project (Wulder et al.,
2016). At the time of writing there are no MSS ARD products (Dwyer
et al., 2018). ARD MSS processing is challenging because the MSS had
no shortwave infrared or thermal wavelength bands and coarser spatial,
spectral and radiometric resolution compared to the later Landsat
sensors. Using MSS data in time series analyses has become more easy,
given the new Landsat Collection strategy. However, because of its
native 57-m×79-m spatial resolution, most MSS data cannot meet the
image-to-image georeferencing tolerance of ≦12-m radial RMSE for
Tier 1 of the Collections and are placed in Tier 2. In addition, MSS data
were collected with 6-bit radiometric resolution and the four spectral

bands (red, green and two near-infrared) do not match those of the later
Landsat sensors. As a result, reliable MSS atmospheric correction and
cloud masking is difficult to implement. These serious trade-offs,
however, are dwarfed when the science or application information need
requires Landsat data collected before 1985. For these years MSS is a
unique data record; for 13 years (1972–1984) MSS are the only source
of global data for applications requiring moderate resolution digital
satellite data.

Conceptually, there are two primary pathways for using MSS data
for time series analyses through the full archive: temporal splicing, and
temporal harmonization. Temporal splicing would analyze the MSS
data independent of the TM/ETM+/OLI portion of the archive. This
could involve time series algorithms described in Cohen et al. (2017)
and elsewhere. Because there is overlap in coverage by both MSS and
TM between 1982 and 1995, there would be two sets of predictions for
that period. Ideally, the mapped change results for the overlapping
period would be the same for both datasets, and a simple concatenation
would suffice after trimming the last several years of MSS results
(1982–1995). More likely, however, there will be cases with some
mapped differences in the overlapping period; e.g., for a given pixel, a
subtle disturbance identified between 1987 and 1988 represented by a
minor spectral change followed by a two-year spectral recovery in the
MSS series and no disturbance (and hence no recovery) mapped for that
period in the TM series. In circumstances such as these, a logic would be
required to blend or splice the two sets of results at the pixel-level.
Splicing would be complicated by consideration of the spatial resolu-
tion difference between the two sensors.

Temporal harmonization would involve derivation of adjustment
equations to translate MSS spectral bands into TM spectral bands or
vegetation indices using statistical regression approaches applied to
near contemporaneous data (e.g., Roy et al., 2016a) or to coincident
under flight data (e.g., Holden and Woodcock, 2016). However, be-
cause MSS data have reduced resolution and different spectral band
passes compared to TM data more research is required. Despite these
issues, a process for harmonizing MSS and TM data has been developed
which includes cloud and cloud shadow masking a (Braaten et al.,
2015) and provides MSS TOA reflectance adjusted to the equivalent TM
bands (Fig. 6).

5.2.3. Landsat/Sentinel-2
The launch of the Sentinel-2 constellation, part of the European

Union's Copernicus Earth Observation program, has dramatically
changed the landscape for land observations. As the “Landsat-like”
component of Copernicus, Sentinel-2 shares many of the technical
characteristics of the existing Landsat system. While Sentinel-2 does not
have a thermal infrared capability, the wider (290 km) swath and two-
platform constellation, Sentinel-2A (launched 2015) and Sentinel-2B
(launched 2017), provides routine 5-day revisit over Earth's land areas
at a spatial resolution of 10 to 60m (Drusch et al., 2012). In addition,
Sentinel-2 provides unique features not available from Landsat, in-
cluding red-edge and water vapor spectral bands, as well 10-m and 20-
m visible to shortwave infrared bands that are higher spatial resolution
than the Landsat-8 30-m bands.

Landsat-8, Sentinel-2A, and Sentinel-2B together provide a global
median average revisit interval of 2.9 days (Li and Roy, 2017). This
opens up the possibility of mapping processes that are highly dynamic
in time, including vegetation phenology, fire dynamics, and coastal/
inland water quality. In principle, this combination of temporal fre-
quency and spatial resolution provides a “30-m MODIS” virtual ob-
servatory, with the ability to extract highly dynamic biophysical pro-
cesses at sub-hectare resolution (Wulder et al., 2015). With the launch
of Landsat-9 planned for late 2020, this virtual constellation will be-
come even more frequent approaching a 2-day revisit cycle.

Recognizing this opportunity, researchers have been actively en-
gaged in finding ways to use Sentinel-2 and Landsat together. The
NASA Multi-source Land Imaging (MuSLI) program has supported
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prototyping activities for new land science products, including burned
area mapping, forest phenology studies, and improved mapping frac-
tional water characterization (Torbick et al., 2018). Similar work is
underway in Europe through Copernicus services and national mon-
itoring activities. The Harmonized Landsat/Sentinel-2 (HLS) project at
NASA GSFC has focused on the necessary radiometric and geometric
corrections to generate a seamless surface reflectance product using
both sensors as inputs (Claverie et al., 2018). These activities have been
complemented by members of the NASA/USGS Landsat Calibration
Team and the ESA Sentinel-2 Validation Team, who have collaborated
to demonstrate that the measurements from Landsat-8 OLI and Sen-
tinel-2 Multi-Spectral Imager (MSI) agree to within their individual
uncertainties (Pahlevan et al., 2018; Barsi et al., 2018).

Despite the evident promise, however, a variety of technical chal-
lenges remain. Pixel-level co-registration between Landsat and Sentinel-
2 has been problematic (Storey et al., 2016), an issue that should be
ameliorated by the use of shared ground control beginning in 2019 and
reprocessing of the Landsat archive to Collection 2. In the interim,
approaches to register the data have been developed (Yan et al., 2016;
Skakun et al., 2017). Atmospheric correction, cloud and shadow
masking algorithms are being developed for both sensors (Doxani et al.,
2018) but currently without a consensus approach. The differing swath
width and orbit tracks result in sun- and view-angle variability between
the sensors for any given ground target and cause reflectance variations
that will be non-negligible for certain applications (Roy et al., 2016b,
2017). Methodologies to statistically calibrate reflectance differences
between Landsat-8 and Sentinel-2 imposed in particular by sensor
spectral band response differences are being developed (Claverie et al.,
2018; Zhang et al., 2018). In addition, the processing system baselines
and Level-2 (surface reflectance) approach for both data sets, in parti-
cular the more recent Sentinel-2 data (Gascon et al., 2017), have
changed quite frequently. New algorithms are being developed within
the remote sensing community to mitigate these issues and create
“harmonized” products from the combined sensor stream, but there
remains room for improved coordination between US agencies and ESA.

5.3. Landsat-9

In 2015, NASA directed Goddard Space Flight Center (GSFC) to
begin implementing the Landsat-9 mission as the first step in the in-
teragency Sustainable Land Imaging (SLI) Program, which seeks to
maintain continuity of moderate-resolution observations through the
2030s. Given that the end of life for Landsat-7 is projected for summer
of 2021 due to fuel supply, coupled with the need to maintain 8-day
revisit continuity, NASA moved forward with Landsat-9 as a near-re-
build of Landsat-8. Landsat-9 will carry two instruments, the
Operational Land Imager-2 (OLI-2) built by Ball Aerospace
Technologies Corp. and the Thermal Infrared Sensor-2 (TIRS-2) built by
GSFC. Northrup Grumman Innovation Systems of Mesa, Arizona, is
building the spacecraft, and General Dynamics (under contract to
USGS) will build the Mission Operations element. Launch of Landsat-9
is scheduled for December 2020. While Landsat-9 OLI-2 is virtually
identical to Landsat-8 OLI for measuring solar-reflected wavelengths,
Landsat-9 TIRS-2 features some upgrades. The original Landsat-8 TIRS
had an optical design problem that caused stray radiance from outside
the field of view to enter the focal plane, degrading the radiometric
accuracy of the instrument (Montanaro et al., 2014). Also, the encoder
for the TIRS scene select mirror stopped operating early in the mission.
These problems have been addressed in the revised TIRS-2 design.
Because TIRS was a late addition to the Landsat-8 mission payload, its
design had little redundancy with only a 3-year design (risk class “C”)
life. Landsat-9 TIRS is being designed to meet 5-year (risk class “B”)
requirements.

The Landsat ground system at USGS EROS has undergone im-
provements with development of a multi-mission operations center that
will support both Landsat-8 and -9 operations and will increase theFi
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computational efficiency of data processing, archiving, management
and distribution. Landsat-9's daily imaging capacity will be on par with
Landsat-8 at ~740 scenes per day even though the mission requirement
remains at 450. Landsat-9's long-term acquisition plan (LTAP) will
mimic Landsat-8 and continue with global land imaging of all sunlit
landmasses and near shore coastal regions at a solar elevation greater
than 5o. The anticipated science value and enhancements of Landsat-9
will be anchored by sustained 8-day global land imaging to support
numerous operational application dependencies, utilization of all 14
bits to further resolve pixel to pixel radiometric resolution, and a higher
degree of absolute radiometric calibration accuracy that will certainly
improve the radiometric calibration for Landsats 1–8.

5.4. Landsat-10

The charge for Landsat-10 under guidance from the SLI program is
to advance measurement capability while preserving continuity and
constraining program costs. Currently, all options are being considered
for Landsat-10 including new, compact imaging technologies, interna-
tional partnerships, and involvement of the commercial sector. While
the system may not be simply an improved Landsat-9, or a single sa-
tellite, continuity with historic measures data record will be main-
tained. NASA is currently investing in technology and technology de-
monstrations to support the SLI program. These investments span
instrument components to full end-to-end instrument concepts that
include multispectral and imaging spectrometer designs. Since 2016,
the USGS has been gathering input on science requirements and needs
from the Landsat user community among other key stakeholders to
inform the next generation of Landsat instruments and data. Science
and measurement requirements are used to guide system architecture.

Other considerations for the Landsat-10 architecture will include
identifying measurement synergies with other international satellite
systems such as Copernicus/ESA Sentinel-2 series under the framework
of multi-source land imaging that seeks to fuse measurements from a
variety of remote sensing technologies to improve temporal revisit
frequency for example. Further, the commercial space industry has
been rapidly growing and now offers a range of cube and/or small sa-
tellite concepts that are currently under evaluation where data products
are being compared against Landsat-8 as the current reference stan-
dard.

The USGS-NASA Landsat Science Teams have been active over the
past several years in contributing to the definition of Landsat-10's sci-
ence requirements and data product specifications. Through this pro-
cess, the Landsat Science Team has used temporal frequency, spatial
resolution, spectral coverage and resolution, and radiometric resolution
as guiding principles during the scoping process. Key conclusions re-
volve around increasing the temporal revisit to 3–5 days cloud-free,
increasing the spatial resolution for most bands from 30 to 10m, adding
targeted spectral bands that improve atmospheric characterization and
enhance or broaden emerging Landsat science applications, and main-
tain if not exceed Landsat-8 OLI's on-orbit radiometric performance.

6. Conclusions

Science and resource management communities have benefited
from Landsat mission continuity, open access to new and historic
imagery, mature and developing ground systems, and an increasingly
broad suite of image data products. Free and open access to Landsat
imagery has fostered the use of Landsat data to address innumerable
science questions, improve resource management, inform reporting
activities, and to support an increasingly large user base that is un-
dertaking sophisticated, integrated, and often unprecedented analyses.
Over the last decade, the Landsat program has looked both forward and
backward. The launch of Landsat-8 secured short-term continuity of
Landsat observations, and the planned 2020 launch of Landsat-9 pro-
vides further continuity of measures and an ability to plan science and

operational capabilities assuming an ongoing data stream. The LGAC
initiative gathered and made available via the USGS otherwise in-
accessible data. Notably, LGAC resulted in a more than doubling of the
number of images in the USGS Landsat archive; an effort equivalent to
the launch of an additional Landsat sensor.

Ground systems are a critical element of the Landsat program, en-
suring a means to get data from the satellite to the users. The USGS has
demonstrated a strong commitment to investing in ground systems,
providing imagery in increasingly seamless and analysis ready forms.
The policy decision to make Landsat data free and open access has
demonstrated the innovations possible when users can access all
available data. As a result, recent Landsat science and applications are
well represented by time series. Users have availed upon the open ac-
cess archive to uncover novel insights on the changes to the earth
system, with linkages made to human activities. Multiple years of data
allow for determination of trends beyond the focused capture of bi-
temporal change. Indeed, the longevity and resulting temporal dimen-
sion of Landsat has emerged as one of the program's greatest innova-
tions.

The Landsat Science Team working in partnership with the leading
government agencies (USGS and NASA) enables the provision of sci-
ence-based, objective inputs on the Landsat program. The Landsat
Science Team has played – and is poised to continue to play – this
important role in representing Landsat program user needs. The spec-
tral measurements made by Landsat are calibrated and allow for
Landsat to operate as a reference instrument, adding value to com-
mercial satellite data and applications. The Landsat Science Team also
articulated the science motivation for bringing MSS data in line with
that of TM and subsequent Landsat instruments and offering options to
produce reliable, continuous measures across all Landsat sensors.
Looking forward, the Landsat Science Team will offer insights on virtual
constellations of satellites (e.g., Landsat and Sentinel-2), use of Landsat-
9, and specifications for Landsat-10.
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